Nonhomogeneous Reenement Equation: Existence, Regularity and Biorthogonality
نویسنده
چکیده
In this paper, the existence, regularity and biorthogonality of the solution of the nonhomogeneous reenement equation (x) = X k2Z Z d 0 c k (2x ? k) + G(x); x 2 IR d are considered. Also new class of biorthogonal wavelet basis on a non-uniform grid is constructed.
منابع مشابه
Laplace Equation in the Half-space with a Nonhomogeneous Dirichlet Boundary Condition
We deal with the Laplace equation in the half space. The use of a special family of weigted Sobolev spaces as a framework is at the heart of our approach. A complete class of existence, uniqueness and regularity results is obtained for inhomogeneous Dirichlet problem.
متن کاملDistributional Solutions of Nonhomogeneous Discrete and Continuous Refinement Equations
Discrete and continuous reenement equations have been widely studied in the literature for the last few years, due to their applications to the areas of wavelet analysis and geometric modeling. However, there is nòuniversal' theorem that deals with the problem about the existence of compactly supported distributional solutions for both discrete and continuous reenement equations simultaneously....
متن کاملBoundary Value Problems for the 2nd-order Seiberg-witten Equations
It is shown that the nonhomogeneous Dirichlet and Neuman problems for the 2nd-order Seiberg-Witten equation on a compact 4-manifold X admit a regular solution once the nonhomogeneous Palais-Smale condition is satisfied. The approach consists in applying the elliptic techniques to the variational setting of the Seiberg-Witten equation. The gauge invariance of the functional allows to restrict th...
متن کاملNonhomogeneous Neumann Problem for the Poisson Equation in Domains with an External Cusp
Abstract. In this work we analyze the existence and regularity of the solution of a nonhomogeneous Neumann problem for the Poisson equation in a plane domain Ω with an external cusp. In order to prove that there exists a unique solution in H(Ω) using the Lax-Milgram theorem we need to apply a trace theorem. Since Ω is not a Lipschitz domain, the standard trace theorem for H(Ω) does not apply, i...
متن کاملRegularity of Re nable Function
We study the existence and regularity of compactly supported solutions = () r?1 =0 of vector reenement equations. The space spanned by the translates of can only provide approximation order if the reenement mask P has certain particular factorization properties. We show, how the factorization of P can lead to decay of j ^ (u)j as juj ! 1. The results on decay are used in order to prove uniquene...
متن کامل